These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The omega-atracotoxins: selective blockers of insect M-LVA and HVA calcium channels. Author: Chong Y, Hayes JL, Sollod B, Wen S, Wilson DT, Hains PG, Hodgson WC, Broady KW, King GF, Nicholson GM. Journal: Biochem Pharmacol; 2007 Aug 15; 74(4):623-38. PubMed ID: 17610847. Abstract: The omega-atracotoxins (omega-ACTX) are a family of arthropod-selective peptide neurotoxins from Australian funnel-web spider venoms (Hexathelidae: Atracinae) that are candidates for development as biopesticides. We isolated a 37-residue insect-selective neurotoxin, omega-ACTX-Ar1a, from the venom of the Sydney funnel-web spider Atrax robustus, with high homology to several previously characterized members of the omega-ACTX-1 family. The peptide induced potent excitatory symptoms, followed by flaccid paralysis leading to death, in acute toxicity tests in house crickets. Using isolated smooth and skeletal nerve-muscle preparations, the toxin was shown to lack overt vertebrate toxicity at concentrations up to 1 microM. To further characterize the target of the omega-ACTXs, voltage-clamp analysis using the whole-cell patch-clamp technique was undertaken using cockroach dorsal unpaired median neurons. It is shown here for the first time that omega-ACTX-Ar1a, and its homolog omega-ACTX-Hv1a from Hadronyche versuta, reversibly block both mid-low- (M-LVA) and high-voltage-activated (HVA) insect calcium channel (Ca(v)) currents. This block occurred in the absence of alterations in the voltage-dependence of Ca(v) channel activation, and was voltage-independent, suggesting that omega-ACTX-1 family toxins are pore blockers rather than gating modifiers. At a concentration of 1 microM omega-ACTX-Ar1a failed to significantly affect global K(v) channel currents. However, 1 microM omega-ACTX-Ar1a caused a modest 18% block of insect Na(v) channel currents, similar to the minor block of Na(v) channels reported for other insect Ca(v) channel blockers such as omega-agatoxin IVA. These findings validate both M-LVA and HVA Ca(v) channels as potential targets for insecticides.[Abstract] [Full Text] [Related] [New Search]