These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Author: Engler AJ, Rehfeldt F, Sen S, Discher DE. Journal: Methods Cell Biol; 2007; 83():521-45. PubMed ID: 17613323. Abstract: It is increasingly appreciated that the mechanical properties of the microenvironment around cells exerts a significant influence on cell behavior, but careful consideration of what is the physiologically relevant elasticity for specific cell types is required to produce results that meaningfully recapitulate in vivo development. Here we outline methodologies for excising and characterizing the effective microelasticity of tissues; but first we describe and validate an atomic force microscopy (AFM) method as applied to two comparatively simple hydrogel systems. With tissues and gels sufficiently understood, the latter can be appropriately tuned to mimic the desired tissue microenvironment for a given cell type. The approach is briefly illustrated with lineage commitment of stem cells due to matrix elasticity.[Abstract] [Full Text] [Related] [New Search]