These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancement of arm and leg locomotor coupling with augmented cutaneous feedback from the hand.
    Author: Zehr EP, Klimstra M, Dragert K, Barzi Y, Bowden MG, Javan B, Phadke C.
    Journal: J Neurophysiol; 2007 Sep; 98(3):1810-4. PubMed ID: 17615121.
    Abstract:
    Cutaneous feedback from the hand could assist with coordination between the arms and legs during locomotion. Previously we used a reduced walking model of combined arm and leg (ARM&LEG) cycling to examine the separate effects of rhythmic arm (ARM) and leg (LEG) movement. Here we use this same paradigm to test the modulation H-reflexes with and without interlimb cutaneous conditioning evoked by stimulating a nerve innervating the hand (superficial radial, SR). It was hypothesized that both ARM and LEG would contribute significantly to suppression of H-reflex amplitude during ARM&LEG. We also predicted a conservation of interlimb cutaneous conditioning during movement and an interaction between arm and leg rhythmic movement control. Subjects were seated in a recumbent ARM&LEG cycle ergometer and maintained a low-level soleus contraction for all tasks. H-reflex amplitude was facilitated by cutaneous conditioning evoked by stimulation of the SR nerve. H-reflex amplitudes were taken from recruitment curves and included modulation of 50% H max and H max. The suppressive effect of arm was less than that for LEG and ARM&LEG, while suppression during LEG and ARM&LEG were generally equivalent. For H-reflexes conditioned by cutaneous input, amplitudes during ARM&LEG instead were in between those for ARM and LEG modulation. Multiple regression analysis revealed a significant contribution for arm only in trials when SR stimulation was used to condition H-reflex amplitudes. We suggest that there is a measurable interaction between neural activity regulating arm and leg movement during locomotion that is specifically enhanced when cutaneous input from the hand is present.
    [Abstract] [Full Text] [Related] [New Search]