These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin secretion defects of human type 2 diabetic islets are corrected in vitro by a new reactive oxygen species scavenger.
    Author: Lupi R, Del Guerra S, Mancarella R, Novelli M, Valgimigli L, Pedulli GF, Paolini M, Soleti A, Filipponi F, Mosca F, Boggi U, Del Prato S, Masiello P, Marchetti P.
    Journal: Diabetes Metab; 2007 Nov; 33(5):340-5. PubMed ID: 17616474.
    Abstract:
    Oxidative stress is a putative mechanism leading to beta-cell damage in type 2 diabetes. We studied isolated human pancreatic islets from type 2 diabetic and non-diabetic subjects, matched for age and body mass index. Evidence of increased oxidative stress in diabetic islets was demonstrated by measuring nitrotyrosine concentration and by electron paramagnetic resonance. This was accompanied by reduced glucose-stimulated insulin secretion, as compared to non-diabetic islets (Stimulation Index, SI: 0.9 +/- 0.2 vs. 2.0 +/- 0.4, P<0.01), and by altered expression of insulin (approximately -60%), catalase (approximately +90%) and glutathione peroxidase (approximately +140%). When type 2 diabetic islets were pre-exposed for 24 h to the new antioxidant bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate di-hydrochloride, nitrotyrosine levels, glucose-stimulated insulin secretion (SI: 1.6+/-0.5) and gene expressions improved/normalized. These results support the concept that oxidative stress may play a role in type 2 diabetes beta-cell dysfunction; furthermore, it is proposed that therapy with antioxidants could be an interesting adjunctive pharmacological approach to the treatment of type 2 diabetes.
    [Abstract] [Full Text] [Related] [New Search]