These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human neuroblastoma cells trigger an immunosuppressive program in monocytes by stimulating soluble HLA-G release.
    Author: Morandi F, Levreri I, Bocca P, Galleni B, Raffaghello L, Ferrone S, Prigione I, Pistoia V.
    Journal: Cancer Res; 2007 Jul 01; 67(13):6433-41. PubMed ID: 17616704.
    Abstract:
    HLA-G is overexpressed in different tumors and plays a role in immune escape. Because no information is available on HLA-G in relation to human neuroblastoma, we have investigated the expression of membrane-bound and secretion of soluble isoforms of HLA-G in neuroblastoma and functionally characterized their immunosuppressive activities. At diagnosis, serum soluble HLA-G (sHLA-G) levels were significantly higher in patients than in age-matched healthy subjects. In addition, patients who subsequently relapsed exhibited higher sHLA-G levels than those who remained in remission. Neuroblastoma patient sera selected according to high sHLA-G concentrations inhibited natural killer (NK) cell and CTL-mediated neuroblastoma cell lysis. Such lysis was partially restored by serum depletion of sHLA-G. In 6 of 12 human neuroblastoma cell lines, low HLA-G surface expression was not up-regulated by IFN-gamma. Only the ACN cell line secreted constitutively sHLA-G. IFN-gamma induced de novo sHLA-G secretion by LAN-5 and SHSY5Y cells and enhanced that by ACN cells. Primary tumor lesions from neuroblastoma patients tested negative for HLA-G. Neuroblastoma patients displayed a higher number of sHLA-G-secreting monocytes than healthy controls. Incubation of monocytes from normal donors with IFN-gamma or pooled neuroblastoma cell line supernatants significantly increased the proportion of sHLA-G-secreting cells. In addition, tumor cell supernatants up-regulated monocyte expression of CD68, HLA-DR, CD69, and CD71 and down-regulated IL-12 production. Our conclusions are the following: (a) sHLA-G serum levels are increased in neuroblastoma patients and correlate with relapse, (b) sHLA-G is secreted by monocytes activated by tumor cells rather than by tumor cells themselves, and (c) sHLA-G dampens anti-neuroblastoma immune responses.
    [Abstract] [Full Text] [Related] [New Search]