These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A light and electron microscopic study of the development of the Mauthner cell and vestibular nerve in the axolotl. Author: Leber SM, Model PG. Journal: J Comp Neurol; 1991 Nov 01; 313(1):17-30. PubMed ID: 1761753. Abstract: Vestibular axons form synapses on a restricted area of the lateral dendrite of the Mauthner cell, a large, identified brainstem neuron found in fish and amphibians. The differentiation of the vestibular nerve, medullary neuropil, and Mauthner cell of the axolotl (Ambystoma mexicanum) was studied to understand better the means by which this synaptic specificity arises. The Mauthner cell first extends a medial process and then a lateral dendrite. The latter initially elongates as a simple process and later sends out branches. As the lateral dendrite grows, vestibular axons enter the brainstem to form one of the earliest of several discrete axon fascicles that course longitudinally through the neuropil. The fascicles, many of which are identifiable on the basis of their location and axonal morphology, are the precursors of the longitudinal tracts of the mature salamander. The lateral dendrite grows dorsally over the orthogonally oriented fascicles, making contact with each at a characteristic time and place. The first afferents to form synapses do so on the soma and proximal lateral dendrite; subsequent afferent groups terminate more distally. Axons within a given fascicle form synapses with the Mauthner cell in a discrete and initially homogeneous domain. As dendritic branches form and the organization of the longitudinal fascicles becomes more complex, the homogeneity of axons terminating on a given region of the Mauthner cell surface is lost, but no major rearrangement or migration of terminals is apparent. These observations are consistent with both active recognition and passive spatiotemporal models of synaptic site specificity.[Abstract] [Full Text] [Related] [New Search]