These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Author: Lee KH, Su YD, Chen SJ, Tseng FG, Lee GB.
    Journal: Biosens Bioelectron; 2007 Nov 30; 23(4):466-72. PubMed ID: 17618110.
    Abstract:
    This study reports a microfluidic chip integrated with an arrayed immunoassay for surface plasmon resonance (SPR) phase imaging of specific bio-samples. The SPR phase imaging system uses a surface-sensitive optical technique to detect two-dimensional (2D) spatial phase variation caused by rabbit immunoglobulin G (IgG) adsorbed on an anti-rabbit IgG film. The microfluidic chip was fabricated by using micro-electro-mechanical-systems (MEMS) technology on glass and polydimethylsiloxane (PDMS) substrates to facilitate well-controlled and reproducible sample delivery and detection. Since SPR detection is very sensitive to temperature variation, a micromachine-based temperature control module comprising micro-heaters and temperature sensors was used to maintain a uniform temperature distribution inside the arrayed detection area with a variation of less than 0.3 degrees C. A self-assembled monolayer (SAM) technique was used to pattern the surface chemistry on a gold layer to immobilize anti-rabbit IgG on the modified substrates. The microfluidic chip is capable of transporting a precise amount of IgG solution by using micropumps/valves to the arrayed detection area such that highly sensitive, highly specific bio-sensing can be achieved. The developed microfluidic chips, which employed SPR phase imaging for immunoassay analysis, could successfully detect the interaction of anti-rabbit IgG and IgG. The interactions between immobilized anti-rabbit IgG and IgG with various concentrations have been measured. The detection limit is experimentally found to be 1 x 10(-4)mg/ml (0.67 nM). The specificity of the arrayed immunoassay was also explored. Experimental data show that only the rabbit IgG can be detected and the porcine IgG cannot be adsorbed. The developed microfluidic system is promising for various applications including medical diagnostics, microarray detection and observing protein-protein interactions.
    [Abstract] [Full Text] [Related] [New Search]