These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased permeability-oedema and atelectasis in pulmonary dysfunction after trauma and surgery: a prospective cohort study.
    Author: Groeneveld AB.
    Journal: BMC Anesthesiol; 2007 Jul 09; 7():7. PubMed ID: 17620115.
    Abstract:
    BACKGROUND: Trauma and surgery may be complicated by pulmonary dysfunction, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), but the mechanisms are incompletely understood. METHODS: We evaluated lung capillary protein permeability non-invasively with help of the 67Ga-transferrin pulmonary leak index (PLI) technique and extravascular lung water (EVLW) by the transpulmonary thermal-dye dilution technique in consecutive, mechanically ventilated patients in the intensive care unit within 24 h of direct, blunt thoracic trauma (n = 5, 2 with ARDS), and within 12 h of indirect trauma by transhiatal oesophagectomy (n = 8), abdominal surgery for cancer (n = 6) and bone surgery (n = 4). We studied transfusion history, haemodynamics, oxygenation and mechanics of the lungs. The lung injury score (LIS, 0-4) was calculated. Plain radiography was also done to judge densities and atelectasis. RESULTS: The PLI and EVLW were elevated above normal in 61 and 30% of patients, respectively, and the PLI directly related to the number of red cell concentrates given (rs = 0.69, P < 0.001), without group differences. Oxygenation, lung mechanics, radiographic densities and thus the LIS (1.0 [0.25-3.5]) did not relate to PLI and EVLW. However, groups differed in oxygenation and airway pressures and impaired oxygenation related to the number of radiographic quadrants with densities (rs = 0.55, P = 0.007). Thoracic trauma patients had a worse oxygenation requiring higher airway pressures and thus higher LIS than the other patient groups, unrelated to PLI and EVLW but attributable to a higher cardiac output and thereby venous admixture. Finally, patients with radiographic signs of atelectasis had more impaired oxygenation and more densities than those without. CONCLUSION: The oxygenation defect and radiographic densities in mechanically ventilated patients with pulmonary dysfunction and ALI/ARDS after trauma and surgery are likely caused by atelectasis rather than by increased permeability-oedema related to red cell transfusion.
    [Abstract] [Full Text] [Related] [New Search]