These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The importance of N-terminal polycysteine and polybasic sequences for G14alpha and G16alpha palmitoylation, plasma membrane localization, and signaling function.
    Author: Pedone KH, Hepler JR.
    Journal: J Biol Chem; 2007 Aug 31; 282(35):25199-212. PubMed ID: 17620339.
    Abstract:
    Plasma membrane targeting of G protein alpha (Galpha) subunits is essential for competent receptor-to-G protein signaling. Many Galpha are tethered to the plasma membrane by covalent lipid modifications at their N terminus. Additionally, it is hypothesized that Gq family members (Gqalpha,G11alpha,G14alpha, and G16alpha) in particular utilize a polybasic sequence of amino acids in their N terminus to promote membrane attachment and protein palmitoylation. However, this hypothesis has not been tested, and nothing is known about other mechanisms that control subcellular localization and signaling properties of G14alpha and G16alpha. Here we report critical biochemical factors that mediate membrane attachment and signaling function of G14alpha and G16alpha. We find that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences in their N termini and that the polycysteine sequence along with the adjacent polybasic region are both important for G16alpha-mediated signaling at the plasma membrane. Surprisingly, the isolated N termini of G14alpha and G16alpha expressed as peptides fused to enhanced green fluorescent protein each exhibit differential requirements for palmitoylation and membrane targeting; individual cysteine residues, but not the polybasic regions, determine lipid modification and subcellular localization. However, full-length G16alpha, more so than G14alpha, displays a functional dependence on single cysteines for membrane localization and activity, and its full signaling potential depends on the integrity of the polybasic sequence. Together, these findings indicate that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences, and that the adjacent polybasic domain is not required for Galpha palmitoylation but is important for localization and functional activity of heterotrimeric G proteins.
    [Abstract] [Full Text] [Related] [New Search]