These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Clinical and electrophysiological features in Charcot-Marie-Tooth disease with mutations in the NEFL gene. Author: Miltenberger-Miltenyi G, Janecke AR, Wanschitz JV, Timmerman V, Windpassinger C, Auer-Grumbach M, Löscher WN. Journal: Arch Neurol; 2007 Jul; 64(7):966-70. PubMed ID: 17620486. Abstract: BACKGROUND: To date, 13 different neurofilament light-chain polypeptide gene (NEFL) mutations have been identified in 55 patients with Charcot-Marie-Tooth disease (CMT) from 16 families. NEFL mutations were found to be associated with axonal and demyelinating variants of CMT. OBJECTIVES: To describe the clinical features of 11 patients with CMT and NEFL mutations and to explore possible genotype-phenotype correlations. DESIGN: Standardized neuromuscular and nerve conduction studies were performed, and the coding regions of the peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ), gap junction beta-1 protein (GJB1), and NEFL genes were analyzed by direct DNA sequencing. SETTING: Two university hospitals in Austria (referral centers for neuromuscular disorders). Patients Eleven patients with CMT and NEFL mutations. Main Outcome Measure We genotyped NEFL in all of the patients and healthy relatives and correlated the genotype with the phenotype. RESULTS: A novel NEFL mutation (p.L93P) was detected in 1 family with 4 affected individuals exhibiting a severe CMT phenotype. Nerve conduction velocities were intermediately slowed to a range of 35 to 39 m/s. In a second family and in a sporadic patient, a p.P8R mutation was identified with intermediate and severe nerve conduction slowing. CONCLUSION: The results argue against an obvious genotype-phenotype correlation regarding disease onset, degree of muscle weakness, and nerve conduction slowing caused by NEFL mutations.[Abstract] [Full Text] [Related] [New Search]