These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exposition of newborn rats to bacterial endotoxin impairs pancreatic enzyme secretion at adult age.
    Author: Jaworek J, Nawrot-Porabka K, Leja-Szpak A, Szklarczyk J, Macko M, Bonior J, Stachura J, Konturek SJ, Pawlik WW.
    Journal: J Physiol Pharmacol; 2007 Jun; 58(2):287-302. PubMed ID: 17622698.
    Abstract:
    Lipopolysaccharide (LPS, endotoxin) is the component of the cellular wall of Gram negative bacteria. Endotoxemia (sepsis) could produce multiorgan failure and in the early period of life LPS are responsible for the changes of metabolism and for the reduction of protein synthesis. The influence of neonatal endotoxemia on the pancreas at adults has not been investigated yet. The aim of this study was to assess the pancreatic exocrine function in the adult rats which have been subjected, in the neonatal period of life, to chronic LPS pretreatment. LPS from E. coli or S. typhi at doses of 5, 10 or 15 mg/kg-day was administered intraperitoneally (i.p.) to the suckling rats (30 g) during 5 consecutive days. Three months later these animals (300 g) were equipped with pancreato-biliary fistulae for the in vivo secretory study. Amylase release from isolated pancreatic acini obtained from these rats was also assessed. Pancreatic tissue samples were taken for histological assessment and for the determination of gene expression for CCK1 receptor by RT-PCR. Pancreatic amylase secretions stimulated by caerulein or by diversion of pancreatic-biliary juice to the exterior (DBPJ) was significantly, and dose-dependently reduced in the adult rats which have been subjected in infancy to chronic pretreatment with LPS from E. coli or S. typhi, as compared to the untreated control. In these animals basal secretion was unaffected. In the rats pretreated with LPS in the suckling period of life caerulein-induced amylase release from isolated pancreatic acini was significantly decreased, as compared to the untreated with LPS control. This was accompanied by dose-dependent reduction of mRNA signal for CCK1 receptor on pancreatic acini. Neonatal endotoxemia failed to affect significantly pancreatic morphology as well as plasma amylase level in the adult rats. We conclude that neonatal endotoxemia reduces gene expression for CCK1 receptor and could produce impairment of the exocrine pancreatic function at adult age.
    [Abstract] [Full Text] [Related] [New Search]