These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cell-cell communication in sourdough lactic acid bacteria: a proteomic study in Lactobacillus sanfranciscensis CB1. Author: Di Cagno R, De Angelis M, Limitone A, Minervini F, Simonetti MC, Buchin S, Gobbetti M. Journal: Proteomics; 2007 Jul; 7(14):2430-46. PubMed ID: 17623302. Abstract: The mechanisms of cell-cell communication in Lactobacillus sanfranciscensis CB1 were studied. The highest number of dead/damaged cells of L. sanfranciscensis CB1 was found in cocultures with Lactobacillus plantarum DC400 or Lactobacillus brevis CR13 when the late stationary phase of growth (18 h) was reached. 2-DE analysis was carried out. Almost the same proteins were induced in all three cocultures at the mid-exponential phase of growth (7 h). The number of induced proteins markedly increased at 18 h, especially when L. sanfranciscensis CB1 was cocultured with L. plantarum DC400 or L. brevis CR13. Nineteen overexpressed proteins were identified. These proteins had a central role in stress response mechanisms and LuxS-mediated signalling was involved in the regulation of most of them. The luxS and metF genes were partially sequenced in L. sanfranciscensis CB1. RT-PCR showed that the expression of luxS gene decreased from 7 to 12 h. It was highest in cocultures with L. plantarum DC400 and L. brevis CR13. 2(3H)dihydrofuranone-5ethyl and 2(3H)dihydrofuranone-5pentyl were identified as presumptive signalling molecules when L. sanfranciscensis CB1 was cocultured with L. brevis CR13 and, especially, L. plantarum DC400. The synthesis of other volatile compounds and peptidase activities were also influenced by the type of microbial cocultures.[Abstract] [Full Text] [Related] [New Search]