These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CCR5 and CXCR3 are dispensable for liver infiltration, but CCR5 protects against virus-induced T-cell-mediated hepatic steatosis.
    Author: Holst PJ, Orskov C, Qvortrup K, Christensen JP, Thomsen AR.
    Journal: J Virol; 2007 Sep; 81(18):10101-12. PubMed ID: 17626099.
    Abstract:
    CCR5 and CXCR3 are important molecules in regulating the migration of activated lymphocytes. Thus, the majority of tissue-infiltrating T cells found in the context of autoimmune conditions and viral infections express CCR5 and CXCR3, and the principal chemokine ligands are expressed within inflamed tissues. Accordingly, intervention studies have pointed to nonredundant roles of these receptors in models of allograft rejection, viral infection, and autoimmunity. In spite of this, considerable controversy exists, with many studies failing to support a role for CCR5 or CXCR3 in disease pathogenesis. One possible explanation is that different chemokine receptors may take over in the absence of any individual receptor, thus rendering individual receptors redundant. We have attempted to address this issue by analyzing CCR5(-/-), CXCR3(-/-), and CCR5/CXCR3(-/-) mice with regard to virus-induced liver inflammation, generation and recruitment of effector cells, virus control, and immunopathology. Our results indicate that CCR5 and CXCR3 are largely dispensable for tissue infiltration and virus control. In contrast, the T-cell response is accelerated in CCR5(-/-) and CCR5/CXCR3(-/-) mice and the absence of CCR5 is associated with the induction of CD8(+) T-cell-mediated immunopathology consisting of marked hepatic microvesicular steatosis.
    [Abstract] [Full Text] [Related] [New Search]