These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers.
    Author: Gilbert ER, Li H, Emmerson DA, Webb KE, Wong EA.
    Journal: Poult Sci; 2007 Aug; 86(8):1739-53. PubMed ID: 17626820.
    Abstract:
    The objective of this study was to investigate intestinal nutrient transporter and enzyme mRNA in broilers selected on corn- and soybean-based (line A) or wheat-based (line B) diets. We investigated the peptide transporter PepT1, 10 amino acid transporters (rBAT, b(o,+)AT, ATB(o,+), CAT1, CAT2, LAT1, y(+)LAT1, y(+)LAT2, B(o)AT, and EAAT3), 4 sugar transporters (SGLT1, SGLT5, GLUT5, and GLUT2), and a digestive enzyme (aminopeptidase N). Intestine was collected at embryo d 18 and 20, day of hatch, and d 1, 3, 7, and 14 posthatch. The mRNA abundance of each gene was assayed using real-time PCR and the absolute quantification method. For PepT1, line B had greater quantities of mRNA compared with line A (P = 0.001), suggesting a greater capacity for absorption of amino acids as peptides. Levels of PepT1 mRNA were greatest in the duodenum (P < 0.05), whereas the abundances of SGLT1, GLUT5, and GLUT2 mRNA were greatest in the jejunum (P < 0.05). Abundances of EAAT3, b(o,+)AT, rBAT, B(o)AT, LAT1, CAT2, SGLT5, and aminopeptidase N mRNA were greatest in the ileum (P < 0.05). Quantities of PepT1, EAAT3, B(o)AT, SGLT1, GLUT5, and GLUT2 mRNA increased linearly (P < 0.01), whereas CAT1, CAT2, y(+)LAT1, and LAT1 mRNA decreased linearly (P < 0.05) with age. Abundance of y(+)LAT2 mRNA changed cubically (P = 0.002) with peaks of expression at day of hatch and d 7, and aminopeptidase N and SGLT5 mRNA changed quadratically (P = 0.005) with age. These results provide a comprehensive profile of the temporal and spatial expression of nutrient transporter mRNA in the small intestine of chicks.
    [Abstract] [Full Text] [Related] [New Search]