These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7.
    Author: Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC.
    Journal: Mol Microbiol; 2007 Aug; 65(4):857-75. PubMed ID: 17627767.
    Abstract:
    Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH > or = 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:H7, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. 55Fe transport assays confirm the ferrous iron specificity of EfeUOB.
    [Abstract] [Full Text] [Related] [New Search]