These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of resurgent sodium-current expression in rat parahippocampal cortices and hippocampal formation.
    Author: Castelli L, Nigro MJ, Magistretti J.
    Journal: Brain Res; 2007 Aug 13; 1163():44-55. PubMed ID: 17628510.
    Abstract:
    The resurgent Na(+) current (I(NaR)) is a component of neuronal voltage-dependent Na(+) currents that is activated by repolarization and is believed to result from an atypical path of Na(+)-channel recovery from inactivation. So far, I(NaR) has only been identified in a small number of central neuronal populations in the cerebellum, diencephalon, and brainstem. The possible presence and roles of I(NaR) in neurons of the cerebral cortex and temporal-lobe memory system are still uncharacterized. In this study whole-cell, patch-clamp experiments were carried out in acute rat brain slices to investigate I(NaR) expression and properties in several neuronal populations of the parahippocampal region and hippocampal formation. Specifically, we examined pyramidal neurons of perirhinal cortex areas 36 and 35 (layers II and V); neurons of superficial and deep layers of medial entorhinal cortex (mEC); dentate gyrus (DG) granule cells; and pyramidal cells of the CA3 and CA1 hippocampal fields. I(NaR) was found to be thoroughly expressed in parahippocampal cortices. The most consistent and prominent I(NaR) expression was observed in mEC layer-II cells. A vast majority of areas 36 and 35 neurons (both in layers II and V) and mEC layer-III and -V neurons were also endowed with I(NaR), although at lower amplitude levels. I(NaR) was expressed by approximately 60% of DG granule cells and approximately 35% of CA1 pyramidal cells of the ventral hippocampus, whereas it was never observed in CA3 neurons (both in the ventral and dorsal hippocampus) and CA1 neurons of the dorsal hippocampus. The biophysical properties of I(NaR) were very similar in all of the neuronal types in which the current was observed, with a peak in the current-voltage relationship at -35/-40 mV. Our results show that the parahippocampal region and part of the hippocampal formation are sites of major I(NaR) expression, and provide a new basis for further studies on the molecular correlates of I(NaR).
    [Abstract] [Full Text] [Related] [New Search]