These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The drosulfakinin 0 (DSK 0) peptide encoded in the conserved Dsk gene affects adult Drosophila melanogaster crop contractions.
    Author: Palmer GC, Tran T, Duttlinger A, Nichols R.
    Journal: J Insect Physiol; 2007 Nov; 53(11):1125-33. PubMed ID: 17632121.
    Abstract:
    We report that the drosulfakinin 0 (DSK 0; NQKTMSFNH2) structure and genomic organization are conserved. The DSK 0 C-terminus, SFNH2, is widely distributed in the animal kingdom suggesting it defines a novel peptide family. We also report the first description of DSK 0 activity. DSK 0, I (DSK I, FDDYGHMRFNH2), and II (DSK II, GGDDQFDDYGHMRFNH2) are encoded in sulfakinin (Dsk). Drosophila erecta, Drosophila sechellia, Drosophila simulans, and Drosophila yakuba shared 62.5-87.5% identity to Drosophila melanogaster DSK 0; Drosophila pseudoobscura shared 37.5% identity; numerous amino acids were one nucleotide different from a corresponding residue in D. melanogaster. DSK I and II were identical among the drosopholids. DSK 0 proteolytic processing sites were RR except D. yakuba contained KR and D. pseudoobscura contained HR, one nucleotide different from RR. DSK I and II processing sites were identical among the drosopholids. We established DSK 0 decreased adult (EC50=237nM and R(2)=0.941), but not larval gut contractions. DSK 0 exists in the central nervous system including the subesophageal ganglion and an abdominal ganglion. Peptide and genomic conservation, activity, and spatial and temporal distribution support the conclusion that DSK 0 plays diverse biological roles in drosopholids including regulating gut muscle contraction.
    [Abstract] [Full Text] [Related] [New Search]