These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sol-gel bioactive glasses support both osteoblast and osteoclast formation from human bone marrow cells. Author: Karpov M, Laczka M, Leboy PS, Osyczka AM. Journal: J Biomed Mater Res A; 2008 Mar 01; 84(3):718-26. PubMed ID: 17635026. Abstract: We have examined the ability of bioactive sol-gel glass ceramics to support both osteoblast and osteoclast differentiation from human bone marrow cells (HBMC). Nucleated cells from human bone marrow were cultured on tissue culture plastic and on two sol-gel coatings: A2 glass-ceramic containing 54 mol % CaO/40 mol % SiO(2) and S2 glass-ceramic containing 16 mol % CaO/80 mol % SiO(2). Osteoblast differentiation was followed by measuring alkaline phosphatase (ALP) activity, mRNA levels for ALP, osteopontin, RANK ligand (RANKL), and immunofluorescent co-localization of ALP and RANKL. Osteoclasts were identified by morphology and positive staining for tartrate-resistant acid phosphatase (TRAP). ALP activity and mRNA levels were similar for cells on A2 coatings and on tissue culture plastic, but mRNA levels of osteopontin and RANKL were tenfold higher on A2 than on plastic. Cultures on A2 coatings also contained multinucleated osteoclasts staining positively for TRAP. In contrast, cells cultured on S2 coatings had the characteristics of more differentiated osteoblasts as measured by higher ALP expression. However, the levels of osteopontin and RANKL mRNA on S2 glass were lower than on A2 glass and there were fewer, weakly staining TRAP-positive multinucleate cells. Thus, sol-gel glass-ceramic materials differing in CaO/SiO(2) ratios can produce markedly different effects on the osteoblast and osteoclast differentiation from HBMC.[Abstract] [Full Text] [Related] [New Search]