These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular mechanisms accounting for fibrinogen deficiency: from large deletions to intracellular retention of misfolded proteins. Author: Vu D, Neerman-Arbez M. Journal: J Thromb Haemost; 2007 Jul; 5 Suppl 1():125-31. PubMed ID: 17635718. Abstract: Fibrinogen, the soluble precursor of fibrin, which is the main protein constituent of the blood clot, is synthesized in hepatocytes in the form of a hexamer composed of two sets of three polypeptides (Aalpha, Bbeta, and gamma). Each polypeptide is encoded by a distinct gene, FGA, FGB and FGG, all three clustered in a region of 50 kb on 4q32. Congenital afibrinogenemia is characterized by the complete absence of fibrinogen. The first causative mutation for this disease was identified in Geneva in a non-consanguineous Swiss family in 1999: the four patients were homozygous for a large deletion in the fibrinogen cluster, which eliminated almost the entire FGA genomic sequence. Mutations in the fibrinogen genes may lead to deficiency of fibrinogen by several mechanisms: acting at the DNA level, at the RNA level by affecting mRNA splicing or stability, or at the protein level by affecting protein synthesis, assembly or secretion. Recent reviews have provided helpful updates for the rapidly growing number of causative mutations identified in patients with fibrinogen deficiencies, either afibrinogenemia or hypofibrinogenemia. The aim of this review is to highlight specifically the subset of mutations that allow fibrinogen chain synthesis and hexamer assembly but impair secretion. Indeed, functional studies of these mutations have shed light on the specific sequences and structures in the fibrinogen molecule involved in the quality control of fibrinogen secretion.[Abstract] [Full Text] [Related] [New Search]