These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vast magnetic monolayer film with surfactant-stabilized Fe3O4 nanoparticles using Langmuir-Blodgett technique.
    Author: Lee DK, Kim YH, Kim CW, Cha HG, Kang YS.
    Journal: J Phys Chem B; 2007 Aug 09; 111(31):9288-93. PubMed ID: 17636981.
    Abstract:
    Although several methods (e.g., self-assembly, spin coating, etc.) have been explored for making a monolayer film of nanoparticles, the monolayer on a substrate is typically smaller than 1 micromx1 microm in certain regions. The approach is not ideally suitable for generating a highly ordered and close-packed homogeneous vast monolayer of nanoparticles, which is potentially important for applications. In this report, the preparation of the vast monolayer films of Fe3O4 nanoparticles with a wide range such as that over 3.25 micromx3.95 microm is reported. Their TEM images showed a two-dimensional assembly of Fe3O4 nanoparticles, demonstrating the uniformity of these nanoparticles. The formation of a Langmuir monolayer of the oleic acid-coated Fe3O4 nanoparticles mixed with stearic acid molecules at the air/water interface and its stability were studied with a pressure-area isotherm curve. TEM and BAM studies demonstrated that increasing surface pressure resulted in a transition from well-separated domains of nanoparticles complex to well-compressed, monoparticulate layers.
    [Abstract] [Full Text] [Related] [New Search]