These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chaperones are the target in aloe-emodin-induced human lung nonsmall carcinoma H460 cell apoptosis.
    Author: Lai MY, Hour MJ, Wing-Cheung Leung H, Yang WH, Lee HZ.
    Journal: Eur J Pharmacol; 2007 Nov 14; 573(1-3):1-10. PubMed ID: 17643413.
    Abstract:
    Our previous study has demonstrated that aloe-emodin induced a significant change in the expression of apoptosis-related proteins in H460 cells. However, the molecular mechanisms underlying the biological effects of aloe-emodin still remain unknown. The present study applied 2D electrophoresis (pH range 4-7) to the proteins involved in aloe-emodin (40 muM)-induced H460 cell apoptosis. Eleven proteins were found to markedly change. These altered proteins were identified as ATP synthase, vimentin, HSP60, HSP70 and protein disulfide isomerase. Aloe-emodin caused a time-dependent decrease in intracellular ATP levels, which might be related to direct inhibition of ATP synthase. We also observed that the activity of mitochondria was injured by aloe-emodin. These data clearly demonstrated that mitochondria may play a critical role in aloe-emodin-induced H460 cell death. Many reports emphasize that chaperones have a complex role in apoptosis. The present study suggested that the increasing protein expression of HSP60, HSP70, 150 kDa oxygen-regulated protein and protein disulfide isomerase is involved in aloe-emodin-induced H460 cell apoptosis. HSP70, 150 kDa oxygen-regulated protein and protein disulfide isomerase are endoplasmic reticulum chaperone. Therefore, we hypothesized that the increasing endoplasmic reticulum stress serves to promote H460 cell apoptosis after treatment with aloe-emodin. We also demonstrated aloe-emodin-induced H460 cell death through caspase-3 apoptotic pathway, but not apoptosis-inducing factor apoptotic pathway.
    [Abstract] [Full Text] [Related] [New Search]