These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of second messenger pathways stimulated by different chemokines acting at the chemokine receptor CCR5.
    Author: Leach K, Charlton SJ, Strange PG.
    Journal: Biochem Pharmacol; 2007 Sep 15; 74(6):881-90. PubMed ID: 17645873.
    Abstract:
    The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin-stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca(2+) mobilisation in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1alpha (D26A) (MIP-1alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCL5), MIP-1beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin-stimulated cAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCL5, CCL8 and CCL13 were able to stimulate Ca(2+) mobilisation through CCR5, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca(2+) responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca(2+) mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca(2+) mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCR5.
    [Abstract] [Full Text] [Related] [New Search]