These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Effects of long-term potassium fertilization on potassium fixation in soils under different ecological conditions: a mechanism study]. Author: Zhang HM, Xu MG, Lü JL, Liu HX. Journal: Ying Yong Sheng Tai Xue Bao; 2007 May; 18(5):1009-14. PubMed ID: 17650849. Abstract: By using X-ray diffraction and laboratory simulation, this paper studied the effects of long-term potassium (K) fertilization on K fixation in black soil, loess soil, and grey desert soil under different ecological conditions and cropping systems. The results showed that long-term K fertilization had greater effects on the K fixation capacity of soils with lower hydromica content. When the K application rate was 400 to 4 000 mg x kg(-1), the K fixation capacity of black soil and loess soil, whose hydromica contents were low or relatively low, decreased by 75-747 mg x kg(-1) and 16-238 mg x kg(-1), respectively, compared with no K application, while no change was observed in grey desert soil whose hydromica content was high. Long-term K application could affect the changes of soil K-bearing minerals, i.e., slowing down or holding back the transformation of hydromica into mixed-layered mica-smectite, and consequently, decreased the K fixation capacity of soil. The increase of soil slow-available K content and K+ saturation owing to the long-term K application also induced the decrease of the K fixation capacity.[Abstract] [Full Text] [Related] [New Search]