These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The influence of fatty acids on model cholesterol/phospholipid membranes.
    Author: Hac-Wydro K, Wydro P.
    Journal: Chem Phys Lipids; 2007 Nov; 150(1):66-81. PubMed ID: 17651712.
    Abstract:
    The aim of this work was to verify the influence of the saturated (SFA) (stearic acid) and the unsaturated (UFA) (oleic and alpha-linolenic) fatty acids on model cholesterol/phospholipid membranes. The experiments were based on the Langmuir monolayer technique. Cholesterol and phospholipid were mixed in the molar ratio that corresponds to the proportion of these lipids in the majority of natural human membranes. Into the binary cholesterol/phospholipid monolayers, various amounts of fatty acids were incorporated. Our investigations were based on the analysis of the interactions between molecules in ternary (cholesterol/phospholipids/fatty acid) mixtures, however, also binary (cholesterol/fatty acid and phospholipids/fatty acid) mixed system were examined. It was concluded that the influence of the fatty acids on model cholesterol/phospholipid membrane is closely connected with the shape of the fatty acid molecule, resulting from the saturation degree of the hydrocarbon chain. It was found that the saturated fatty acid makes the model membrane more rigid, while the presence of unsaturated fatty acid increases its fluidity. The increasing amount of stearic acid gradually destabilizes model membrane, however, this effect is the weakest at low content of SFA in the mixed monolayer. Unsaturated fatty acids in a small proportion make the membrane thermodynamically more stable, while higher content of UFA decreases membrane stability. This explains low proportion of the free fatty acids to other lipids in natural membrane.
    [Abstract] [Full Text] [Related] [New Search]