These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glycophorin A-knockout mice, which lost sialoglycoproteins from the red blood cell membrane, are resistant to lethal infection of Babesia rodhaini.
    Author: Takabatake N, Okamura M, Yokoyama N, Ikehara Y, Akimitsu N, Arimitsu N, Hamamoto H, Sekimizu K, Suzuki H, Igarashi I.
    Journal: Vet Parasitol; 2007 Sep 01; 148(2):93-101. PubMed ID: 17651898.
    Abstract:
    Recent in vitro-based studies using several Babesia spp. have suggested that sialic acids and/or sialoglycoproteins on host red blood cells (RBCs) play an important role in their invasion of RBCs. In the present study, we analyzed the RBC characteristics of glycophorin A (GPA)-knockout mice and studied their in vivo susceptibility to lethal infection of Babesia rodhaini for the first time. In immunoblot and lectin blot analyses, glycoproteins containing O-linked oligosaccharides terminated with alpha2-3-linked sialic acids disappeared from the RBCs of GPA homozygous ((-/-)) mice. Flow cytometric analysis showed a remarkable reduction of Maackia amurensis lectin II binding to the surface of GPA(-/-) RBCs relative to control RBCs, indicating an appreciable loss of alpha2-3-linked sialic acids on the RBC surface of GPA(-/-) mice. Importantly, while B. rodhaini caused lethal infection in wild-type mice, the infected GPA(-/-) mice showed inhibition of parasite growth and eventually survived. These results indicate that RBC sialoglycoproteins lost in GPA(-/-) mice are involved in the in vivo growth of B. rodhaini, probably functioning as essential molecule(s) for the parasite invasion of host RBCs in the blood circulation.
    [Abstract] [Full Text] [Related] [New Search]