These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Na+- and K+-dependent oligomeric interconversion among alphabeta-protomers, diprotomers and higher oligomers in solubilized Na+/K+-ATPase.
    Author: Kobayashi T, Tahara Y, Takenaka H, Mimura K, Hayashi Y.
    Journal: J Biochem; 2007 Aug; 142(2):157-73. PubMed ID: 17652331.
    Abstract:
    Protein fractions of a higher-oligomer (H), (alphabeta)(2)-diprotomer (D) and alphabeta-protomer (P) were separated from dog kidney Na(+)/K(+)-ATPase solubilized in the presence of NaCl and KCl. Na(+)/K(+)-dependent interconversion of the oligomers was analysed using HPLC at 0 degrees C. With increasing KCl concentrations, the content or amount of D increased from 27.6 to 54.3% of total protein, i.e. DeltaC(max) = 26.7%. DeltaC(max) for the sum of D and H was equivalent to the absolute value of DeltaC(max) for P, regardless of the anion present, indicating that K(+) induced the conversion of P into D and/or H, and Na(+) had the opposite effect. When enzymes that had been denatured to varying degrees by aging were solubilized, DeltaC(max) increased linearly with the remaining ATPase activity. The magnitude of the interconversion could be explained based on an equilibrium of D <==> 2P, assuming 50-fold difference in the K(d) between KCl and NaCl, and coexistence of unconvertible oligomers, which comprised as much as 39% of the eluted protein. Oligomeric interconversion, determined as a function of the KCl or NaCl concentration, showed K(0.5)s of 64.8 microM and 6.50 mM for KCl and NaCl, respectively, implying that oligomeric interconversion was coupled with Na(+)/K(+)-binding to their active transport sites.
    [Abstract] [Full Text] [Related] [New Search]