These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences. Author: Sun T, Holmes D, Gawad S, Green NG, Morgan H. Journal: Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346. Abstract: A novel impedance spectroscopy technique has been developed for high speed single biological particle analysis. A microfluidic cytometer is used to measure the impedance of single micrometre sized latex particles at high speed across a range of frequencies. The setup uses a technique based on maximum length sequence (MLS) analysis, where the time-dependent response of the system is measured in the time domain and transformed into the impulse response using fast M-sequence transform (FMT). Finally fast Fourier transform (FFT) is applied to the impulse response to give the transfer-function of the system in the frequency domain. It is demonstrated that the MLS technique can give multi-frequency (broad-band) measurement in a short time period (ms). The impedance spectra of polystyrene micro-beads are measured at 512 evenly distributed frequencies over a range from 976.5625 Hz to 500 kHz. The spectral information for each bead is obtained in approximately 1 ms. Good agreement is shown between the MLS data and both circuit simulations and conventional AC single frequency measurements.[Abstract] [Full Text] [Related] [New Search]