These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Octopaminergic modulation of interneurons in the flight system of the locust. Author: Ramirez JM, Pearson KG. Journal: J Neurophysiol; 1991 Nov; 66(5):1522-37. PubMed ID: 1765792. Abstract: 1. Modulatory effects of octopamine perfusion on identified central neurons in the flight system of the locust Locusta migratoria were examined by means of intracellular recordings from the isolated metathoracic ganglion. 2. Octopamine increased the excitatory response of elevator motoneurons to electrical stimulation of the hindwing tegula and increased the probability of triggering rhythmic activity in the flight system by current injection into single interneurons. 3. These effects of octopamine on the flight system are due in part to octopamine inducing intrinsic bursting properties in flight interneurons. Plateau potentials were evoked in these interneurons by synaptic input from tegula or by the injection of depolarizing current pulses. These potentials were prematurely terminated by hyperpolarizing currents, and their generation was voltage sensitive in that they were suppressed with hyperpolarizing offset currents. 4. Longer depolarizing current pulses evoked endogenous bursting in a number of flight interneurons. This rhythmic bursting was reset by the injection of pulses of hyperpolarizing currents. The frequency of bursting was dependent on the injected current strength. 5. The injection of hyperpolarizing current into flight interneurons during octopamine-induced rhythmic activity lead to sudden decreases in the amplitude of the depolarizations thus indicating that plateau potentials contribute to the generation of the rhythmic depolarizations. 6. The shape of the depolarizations, the duration of the bursts (50-75 ms), and the frequency range of endogenous bursting (4-16 Hz) as seen in individual interneurons during octopamine perfusion were similar to the corresponding characteristics in the same neurons during wind-induced flight activity in deafferented locusts. This correspondence suggests that intrinsic bursting properties may play an important role in generating the normal motor pattern for flight.[Abstract] [Full Text] [Related] [New Search]