These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by bandlimited noise.
    Author: Spirou GA, Young ED.
    Journal: J Neurophysiol; 1991 Nov; 66(5):1750-68. PubMed ID: 1765805.
    Abstract:
    1. Response maps of 49 type IV neurons in cat dorsal cochlear nucleus (DCN) were studied by moving a tone in small steps along the frequency dimension and along the intensity dimension. Type IV responses are recorded from DCN principal cells. Data were collected from 38 units with best frequencies (BFs) from 2.16 to 50.3 kHz with the use of electrode penetrations along the long (strial) axis of the DCN; an additional 11 units from a previous study were analyzed. A stereotypical type IV response map is defined as consisting of two excitatory and two inhibitory regions. Type IV units from both the pyramidal cell layer (probably pyramidal cells) and the deep layer (probably giant cells) show the same types of response maps. 2. Two of the regions, one excitatory and one inhibitory, are seen in all type IV units. These regions are a low-threshold excitatory region at best frequency (BFER) and an inhibitory area at higher levels, usually centered below BF but extending upward in frequency to include BF (central inhibitory area, or CIA). The high resolution of the response maps in this paper allows us to show that type IV units fall into two groups on the basis of whether their CIAs are narrow with well-defined borders (35 units) or broad with poorly defined borders (14 units). 3. Two additional features of type IV response maps can be defined, most consistently in units with well-defined CIAs. These features are an excitatory region along the high-frequency edge of the CIA (upper excitatory region, UER) and an upper inhibitory sideband (UIS). The BFER and UER are continuous in many units, but in some cases their continuity is broken by the CIA. It seems likely that the BFER and UER represent a single excitatory input to type IV units and are revealed because the tuning curve of the stronger inhibitory inputs that produce the CIA has thresholds greater than and BFs lower than the excitatory inputs. 4. The CIA is probably produced by inhibitory inputs from DCN type II neurons. The bandwidths of type IV CIAs are about 1-3 times larger (at 40 dB above threshold) than the excitatory bandwidths of DCN type II units, suggesting a convergence of the equivalent in tuning of about two type II units onto each type IV unit. The BF of the CIA is below the excitatory BF of the type IV unit in most cases.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]