These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of long-chain alcohols on SDS partitioning to the oil/water interface of emulsions and on droplet size.
    Author: James-Smith MA, Alford K, Shah DO.
    Journal: J Colloid Interface Sci; 2007 Nov 01; 315(1):307-12. PubMed ID: 17662299.
    Abstract:
    The effect of long-chain alcohols (C(n)OH for n=8, 10, 12, 14, 16, 18) on the partitioning of sodium dodecyl sulfate (SDS) to the oil/water interface in oil-in-water macroemulsions was investigated and related to emulsion droplet size and total interfacial area (TIA) contributed by SDS. Alcohols were solubilized in hexadecane and emulsified in SDS solutions. Ultrafiltration was carried out in centrifuge tubes having nanoporous filters with a 30,000 molecular weight cutoff (MWCO), so that emulsion droplets would not pass through, and only SDS that is in the bulk water phase as monomers or micelles (i.e., not at the interface) could pass through. The results showed a chain-length compatibility effect; the maximum amount of SDS partitioned to the interface when dodecanol (C(12)OH) was added to the oil. The results also showed that partitioning of SDS is affected only when dodecanol is added. All other alcohols had no significant influence on SDS partitioning to the oil/water interface. Droplet size measurements revealed a minimum in droplet size for emulsions with added C(12)OH. In order to explain the results, it was proposed that the penetration of alcohol molecules into the interfacial film occur at the interface, resulting in more cohesive molecular packing at the interface, and the minimum droplet size and maximum partitioning of SDS at the oil/water interface for C(12)OH/SDS emulsion system. The TIA provided by the SDS molecules, as determined from our ultrafiltration method, was two orders of magnitude greater than that calculated from the droplet size measured by light scattering. Possible explanations for this disparity are discussed.
    [Abstract] [Full Text] [Related] [New Search]