These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Treatment of bactericide wastewater by combined process chemical coagulation, electrochemical oxidation and membrane bioreactor. Author: Han WQ, Wang LJ, Sun XY, Li JS. Journal: J Hazard Mater; 2008 Mar 01; 151(2-3):306-15. PubMed ID: 17662522. Abstract: Bactericide wastewater (BIW) contains isothiazolin-ones, high salinity, toxicity and non-biodegradable organic concentrations. In order to enhance biodegradable capacity, chemical coagulation and electrochemical oxidation were applied to pretreatment processes. FeSO(4).7H2O, pH 12 and 20 mmol/l were determined as optimal chemical coagulation condition; and 15 mA/cm2 of current density, 10 ml/min of flow rate and pH 7 were chosen for the most efficient electrochemical oxidation condition at combined treatment. The wastewater which consisted mainly of isothiazolin-ones and sulfide was efficiently treated by chemical coagulation and electrochemical oxidation. The optimal pretreatment processes showed 60.9% of chemical oxygen demand (COD), 99.5% of S(2-) and 96.0% of isothiazolin-ones removal efficiency. A biological treatment system using membrane bioreactor (MBR) adding powder-activated carbon (PAC) was also investigated. COD of the wastewater which was disposed using a MBR was lower than 100 mg/l.[Abstract] [Full Text] [Related] [New Search]