These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A review of errors in multi-frequency EIT instrumentation.
    Author: McEwan A, Cusick G, Holder DS.
    Journal: Physiol Meas; 2007 Jul; 28(7):S197-215. PubMed ID: 17664636.
    Abstract:
    Multi-frequency electrical impedance tomography (MFEIT) was proposed over 10 years ago as a potential spectroscopic impedance imaging method. At least seven systems have been developed for imaging the lung, heart, breast and brain, yet none has yet achieved clinical acceptance. While the absolute impedance varies considerably between different tissues, the changes in the spectrum due to physiological changes are expected to be quite small, especially when measured through a volume. This places substantial requirements on the MFEIT instrumentation to maintain a flat system frequency response over a broad frequency range (dc-MHz). In this work, the EIT measurement problem is described from a multi-frequency perspective. Solutions to the common problems are considered from recent MFEIT systems, and the debate over four-terminal or two-terminal (multiple source) architecture is revisited. An analysis of the sources of MFEIT errors identifies the major sources of error as stray capacitance and common-mode voltages which lead to a load dependence in the frequency response of MFEIT systems. A system that employs active electrodes appears to be the most able to cope with these errors (Li et al 1996). A distributed system with digitization at the electrode is suggested as a next step in MFEIT system development.
    [Abstract] [Full Text] [Related] [New Search]