These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method.
    Author: Li M, Xiao X, Liu R, Chen C, Huang L.
    Journal: J Mater Sci Mater Med; 2008 Feb; 19(2):797-803. PubMed ID: 17665101.
    Abstract:
    Zinc-substituted hydroxyapatite (Zn-HA) powders were prepared by hydrothermal method using Ca(NO(3))(2), (NH(4))(3)PO(4) and Zn(NO(3))(2 )as reagents. X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) were used to characterize the crystalline phase, microstructure, chemical composition, morphology and thermal stability of Zn-HA. The results show that the substitution content of zinc (Zn) in Zn-HA powders prepared in NaOH solution is higher than that prepared in NH(3) solution, and is lower than that of the corresponding amount of starting materials. The substitution of the Zn ion for calcium ion causes a lower crystallinity of Zn-HA and changes the lattice parameters of Zn-HA, since the ionic radius is smaller in Zn(2+) (0.074 nm) than in Ca(2+ )(0.099 nm). Furthermore, the substitution of the Zn ions restrains the growth of Zn-HA crystal and decreases the thermal stability of Zn-HA. Zn-HA powder prepared in NH(3) solution starts to decompose at 800 degrees C when the Zn fraction increases to 15 mol%, while that prepared in NaOH solution start to decompose at 5 mol% Zn. The substitution content of Zn significantly influences the thermal stability, microstructure and morphology of Zn-HA.
    [Abstract] [Full Text] [Related] [New Search]