These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analytical studies on photochemical behavior of phototoxic substances; effect of detergent additives on singlet oxygen generation.
    Author: Onoue S, Yamauchi Y, Kojima T, Igarashi N, Tsuda Y.
    Journal: Pharm Res; 2008 Apr; 25(4):861-8. PubMed ID: 17668299.
    Abstract:
    PURPOSE: Monitoring of reactive oxygen species (ROS) generation from photoirradiated compounds would be effective for the prediction of the phototoxic potential. The aim of this investigation was to clarify the possible role of biomimetic vehicle systems on the photochemical properties of phototoxic compounds, focusing on the singlet oxygen generation. MATERIALS AND METHODS: Nine phototoxic and one non-phototoxic compounds (200 microM), dissolved in Tween 20, sodium laurate, or sodium dodecyl sulfate (SDS) micellar solution, were exposed to UVA/B light (250 W/m2), and singlet oxygen generation was monitored by RNO bleaching methodology. Photochemical properties of photosensitizers were also evaluated by UV measurement, and the interaction of photosensitizers with surfactant micelles was assessed by Z-potential and NMR spectroscopic analyses. RESULTS: All phototoxic compounds tended to generate singlet oxygen under light exposure in the all micellar solutions tested. There appeared to be some differences in photoreactivity of both cationic and anionic photosensitizers among the micelles tested, whereas ROS data on anthracene, dissolved in three micellar solutions, were found to be quite similar. Photosensitizers exhibited no significant changes in UV spectral patterns among the dissolving micellar solutions. Addition of cationic photosensitizer at the final concentration of 100 microM into 100 mM SDS solution resulted in the 20 mV increase of zeta potential and transition of NMR spectral pattern, which would reflect the electrostatic interaction with anionic micelles. CONCLUSION: Based on the data obtained, the photoreactivity of photosensitizing molecules, especially cationic and anionic photosensitizers, strongly depends on the physicochemical properties of the microenvironment.
    [Abstract] [Full Text] [Related] [New Search]