These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Action of Pasteurella multocida toxin on Galpha(q) is persistent and independent of interaction with G-protein-coupled receptors. Author: Orth JH, Lang S, Preuss I, Milligan G, Aktories K. Journal: Cell Signal; 2007 Oct; 19(10):2174-82. PubMed ID: 17669624. Abstract: Pasteurella multocida toxin (PMT) activates Galpha(q) and facilitates stimulation of inositol phosphate accumulation induced by agonists via G(q)-coupled membrane receptors. Here, we studied the effects of PMT on agonist-induced GTPgammaS binding to G(q) in cell membranes and a role of G-protein-coupled receptors in the action of PMT. Pre-treatment of Swiss 3T3 cells with PMT increased bombesin or vasopressin-induced GTPgammaS-binding in cell membranes by about 50 to 150%. Increase in agonist-stimulated GTPgammaS-binding caused by PMT pretreatment was specific for Galpha(q) and not observed with Galpha(11). PMT-induced effects on GTPgammaS-binding were persistent after removing the toxin or in the presence of anti-PMT antibody. Stimulation of agonist-induced GTPgammaS-binding by PMT was independent of phosphorylation of the C-terminal tyrosine356 of Galpha(q). Activation of phospholipase C by PMT occurred via Galpha(q) which was fused to the alpha(1b)-adrenoceptor and also with a C-terminally deleted Galpha(q), which is not able to interact with G protein-coupled membrane receptors. The data indicate that activation of Galpha(q) by PMT is persistent and independent of a functional interaction of G(q) with G-protein-coupled receptors.[Abstract] [Full Text] [Related] [New Search]