These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracochlear pressure and derived quantities from a three-dimensional model. Author: Yoon YJ, Puria S, Steele CR. Journal: J Acoust Soc Am; 2007 Aug; 122(2):952-66. PubMed ID: 17672644. Abstract: Intracochlear pressure is calculated from a physiologically based, three-dimensional gerbil cochlea model. Olson [J. Acoust. Soc. Am. 103, 3445-3463 (1998); 110, 349-367 (2001)] measured gerbil intracochlear pressure and provided approximations for the following derived quantities: (1) basilar membrane velocity, (2) pressure across the organ of Corti, and (3) partition impedance. The objective of this work is to compare the calculations and measurements for the pressure at points and the derived quantities. The model includes the three-dimensional viscous fluid and the pectinate zone of the elastic orthotropic basilar membrane with dimensional and material property variation along its length. The arrangement of outer hair cell forces within the organ of Corti cytoarchitecture is incorporated by adding the feed-forward approximation to the passive model as done previously. The intracochlear pressure consists of both the compressive fast wave and the slow traveling wave. A Wentzel-Kramers-Brillowin asymptotic and numerical method combined with Fourier series expansions is used to provide an efficient procedure that requires about 1 s to compute the response for a given frequency. Results show reasonably good agreement for the direct pressure and the derived quantities. This confirms the importance of the three-dimensional motion of the fluid for an accurate cochlear model.[Abstract] [Full Text] [Related] [New Search]