These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolic forearm vasodilation is enhanced following Bier block with phentolamine. Author: Moradkhan R, McQuillan P, Hogeman C, Leuenberger A, Linton-Frazier L, Leuenberger UA. Journal: Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2289-95. PubMed ID: 17675565. Abstract: The extent to which sympathetic nerve activity restrains metabolic vasodilation in skeletal muscle remains unclear. We determined forearm blood flow (FBF; ultrasound/Doppler) and vascular conductance (FVC) responses to 10 min of ischemia [reactive hyperemic blood flow (RHBF)] and 10 min of systemic hypoxia (inspired O(2) fraction = 0.1) before and after regional sympathetic blockade with the alpha-receptor antagonist phentolamine via Bier block in healthy humans. In a control group, we performed sham Bier block with saline. Consistent with alpha- receptor inhibition, post-phentolamine, basal FVC (FBF/mean arterial pressure) increased (pre vs. post: 0.42 +/- 0.05 vs. 1.03 +/- 0.21 units; P < 0.01; n = 12) but did not change in the saline controls (pre vs. post: 0.56 +/- 0.14 vs. 0.53 +/- 0.08 units; P = not significant; n = 5). Post-phentolamine, total RHBF (over 3 min) increased substantially (pre vs. post: 628 +/- 75 vs. 826 +/- 92 ml/min; P < 0.01) but did not change in the controls (pre vs. post: 618 +/- 66 vs. 661 +/- 35 ml/min; P = not significant). In all conditions, compared with peak RHBF, peak skin reactive hyperemia was markedly delayed. Furthermore, post-phentolamine (pre vs. post: 0.43 +/- 0.06 vs. 1.16 +/- 0.17 units; P < 0.01; n = 8) but not post-saline (pre vs. post: 0.93 +/- 0.16 vs. 0.87 +/- 0.19 ml/min; P = not significant; n = 5), the FVC response to hypoxia (arterial O(2) saturation = 77 +/- 1%) was markedly enhanced. These data suggest that sympathetic vasoconstrictor nerve activity markedly restrains skeletal muscle vasodilation induced by local (forearm ischemia) and systemic (hypoxia) vasodilator stimuli.[Abstract] [Full Text] [Related] [New Search]