These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular simulations of the n -alkane liquid-vapor interface: interfacial properties and their long range corrections. Author: Ibergay C, Ghoufi A, Goujon F, Ungerer P, Boutin A, Rousseau B, Malfreyt P. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051602. PubMed ID: 17677073. Abstract: Monte Carlo simulations have been performed to study the interfacial properties of the liquid-vapor interface of alkanes. We highlight the chemical equilibrium of the liquid-vapor interface by calculating a local chemical potential including the appropriate long-range corrections profiles. We extend the "test-area" (TA) technique developed by Gloor [J. Chem. Phys. 123, 134703 (2005)] on Lennard-Jones and square-well fluids to molecular systems. We establish both operational expressions of the TA approach for the calculation of the surface tension profile and the corresponding long-range corrections by underlining the approximations used. We compare the results between the different operational expressions of the surface tension and focus on the truncation procedures to explain the difference between the different techniques using either the potential or force equations. We make the results of surface tension identical between the different methods by using consistent potential and force equations. In the case of a relatively small cutoff, we propose to show that the Irving-Kirkwood definition and TA methods lead to the same value of the surface tension under condition that appropriate long-range corrections be included in the calculation. We end this paper by calculation of the entropy change profile and a comparison with experiments.[Abstract] [Full Text] [Related] [New Search]