These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Applying a potential across a biomembrane: electrostatic contribution to the bending rigidity and membrane instability. Author: Ambjörnsson T, Lomholt MA, Hansen PL. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051916. PubMed ID: 17677107. Abstract: We investigate the effect on biomembrane mechanical properties due to the presence an external potential for a nonconductive incompressible membrane surrounded by different electrolytes. By solving the Debye-Hückel and Laplace equations for the electrostatic potential and using the relevant stress-tensor we find (1) in the small screening length limit, where the Debye screening length is smaller than the distance between the electrodes, the screening certifies that all electrostatic interactions are short range and the major effect of the applied potential is to decrease the membrane tension and increase the bending rigidity; explicit expressions for electrostatic contribution to the tension and bending rigidity are derived as a function of the applied potential, the Debye screening lengths, and the dielectric constants of the membrane and the solvents. For sufficiently large voltages the negative contribution to the tension is expected to cause a membrane stretching instability. (2) For the dielectric limit, i.e., no salt (and small wave vectors compared to the distance between the electrodes), when the dielectric constant on the two sides are different the applied potential induces an effective (unscreened) membrane charge density, whose long-range interaction is expected to lead to a membrane undulation instability.[Abstract] [Full Text] [Related] [New Search]