These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Porous thermoresponsive-co-biodegradable hydrogels as tissue-engineering scaffolds for 3-dimensional in vitro culture of chondrocytes.
    Author: Huang X, Zhang Y, Donahue HJ, Lowe TL.
    Journal: Tissue Eng; 2007 Nov; 13(11):2645-52. PubMed ID: 17683245.
    Abstract:
    A new porous, thermoresponsive, partially biodegradable, chemically crosslinked hydrogel system was developed, characterized, and tested as a cartilage tissue-engineering scaffold for in vitro chondrocyte culture over a 4-week period. The hydrogel system was composed of poly(N-isopropylacrylamide), poly(D,L-lactic acid), and dextran segments. Pores in the hydrogels were generated using a salt leaching technique. The hydrogels showed thermoresponsive properties, with a lower critical solution temperature at approximately 32 degrees C. They continuously swelled at physiological temperature in phosphate buffered saline (pH 7.4) for at least 1 month. Chondrocytes isolated from embryonic chick sterna were seeded into the hydrogel scaffolds at room temperature and cultured at 37 degrees C for 4 weeks. Real-time reverse-transcriptase polymerase chain reaction quantification was conducted every week to study messenger ribonucleic acid levels of 3 chondrocyte phenotypic markers: type II collagen, type X collagen, and Indian hedgehog. Results suggested that chondrocytes maintained their phenotype during the 4-week in vitro culture and could mimic in vivo development. Chondrocytes were non-enzymatically harvested from the hydrogel scaffold at the end of the fourth week by simply lowering the temperature from 37 degrees C to room temperature. The harvested chondrocytes kept a round morphology, confirming the maintenance of the chondrocyte phenotype in the hydrogel scaffolds.
    [Abstract] [Full Text] [Related] [New Search]