These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Blockade of chronic graft-versus-host disease by alloantigen-induced CD4+CD25+Foxp3+ regulatory T cells in nonlymphopenic hosts. Author: Giorgini A, Noble A. Journal: J Leukoc Biol; 2007 Nov; 82(5):1053-61. PubMed ID: 17684039. Abstract: CD4(+)CD25(+) regulatory T cells (Tregs) are well known to suppress immunopathology induced in lymphopenic animals following T cell reconstitution, including acute graft-versus-host disease (GVHD) post-bone marrow transplantation. The regulatory potential of this subset in nonlymphopenic hosts and in chronic, Th2-mediated GVHD is less clear. We have generated alloantigen-specific cells from CD4(+)CD25(+) populations stimulated with MHC-disparate dendritic cells and found them to express a stable Treg forkhead box p3(+) phenotype with enhanced suppressive activity mediated by cell contact. When transferred into nonlymphopenic F1 hosts, nonspecific Tregs proliferated as rapidly as CD4(+)CD25(-) cells but displayed distinct growth kinetics in vitro. Tregs, expanded in response to alloantigen in vitro, displayed greatly enhanced suppressive activity, which was partially antigen-specific. They were effective inhibitors of chronic GVHD, blocking donor cell engraftment, splenomegaly, autoantibody production, and glomerulonephritis. CD25(+) and CD25(-) cells were equally susceptible to inhibition by immunosuppressive drugs targeting TCR signaling and rapamycin, but Tregs were resistant to inhibition by dexamethasone. The data indicate that alloantigen-driven expansion, rather than homeostatic proliferation, is key to the effectiveness of CD4(+)CD25(+) Tregs in GVHD and suggest that cellular therapy with alloantigen-induced Tregs in combination with glucocorticoid treatment would be effective in prevention of chronic GVHD after immune reconstitution.[Abstract] [Full Text] [Related] [New Search]