These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PDE6 in lamprey Petromyzon marinus: implications for the evolution of the visual effector in vertebrates.
    Author: Muradov H, Boyd KK, Kerov V, Artemyev NO.
    Journal: Biochemistry; 2007 Sep 04; 46(35):9992-10000. PubMed ID: 17685558.
    Abstract:
    Photoreceptor rod and cone phosphodiesterases comprise the sixth family of cyclic nucleotide phosphodiesterases (PDE6). PDE6s have uniquely evolved as effector enzymes in the vertebrate phototransduction cascade. To understand the evolution of the PDE6 family, we have examined PDE6 in lamprey, an ancient vertebrate group. A single PDE6 catalytic subunit transcript was found in the sea lamprey Petromyzon marinus cDNA library. The lamprey PDE6 sequence showed a high degree of homology with mammalian PDE6 and equally distant relationships with the rod and cone enzymes. In contrast, two different PDE6 inhibitory Pgamma subunits, a cone-type Pgamma1 and a mixed cone/rod-type Pgamma2, have been identified in the lamprey retina. Immunofluorescence analysis demonstrated that Pgamma1 and Pgamma2 are expressed in the long and short photoreceptors of sea lamprey, respectively. The catalytic PDE6 subunit was present in the photoreceptors of both types and colocalized with the Pgamma subunits. Recombinant Pgamma1 and Pgamma2 potently inhibited trypsin-activated lamprey and bovine PDE6 enzymes. Our results point to a high degree of conservation of PDE6 genes during the vertebrate evolution. The apparent duplication of the Pgamma gene in the stem of vertebrate lineage may have been an essential component of the evolution of scotopic vision in early vertebrates.
    [Abstract] [Full Text] [Related] [New Search]