These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of mRNA-display-based selections using synthetic peptide and natural protein libraries. Author: Huang BC, Liu R. Journal: Biochemistry; 2007 Sep 04; 46(35):10102-12. PubMed ID: 17685586. Abstract: mRNA display is a genotype-phenotype conjugation method that allows the amplification-based, iterative rounds of in vitro selection to be applied to peptides and proteins. Compared to prior protein selection techniques, mRNA display can be used to select functional sequences from both long natural protein and short combinatorial peptide libraries with much higher complexities. To investigate the basic features and problems of using mRNA display in studying conditional protein-protein interactions, we compared the target-binding selections against calmodulin (CaM) using both a natural protein library and a combinatorial peptide library. The selections were efficient in both cases and required only two rounds to isolate numerous Ca2+/CaM-binding natural proteins and synthetic peptides with a wide range of affinities. Many known and novel CaM-binding proteins were identified from the natural human protein library. More than 2000 CaM-binding peptides were selected from the combinatorial peptide library. Unlike sequences from prior CaM-binding selections that correlated poorly with naturally occurring proteins, synthetic peptides homologous to the Ca2+/CaM-binding motifs in natural proteins were isolated. Interestingly, a large number of synthetic peptides that lack the conventional CaM-binding secondary structures bound to CaM tightly and specifically, suggesting the presence of other interaction modes between CaM and its downstream binding targets. Our results indicate that mRNA display is an ideal approach to the identification of Ca2+-dependent protein-protein interactions, which are important in the regulation of numerous signaling pathways.[Abstract] [Full Text] [Related] [New Search]