These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli.
    Author: Zhang W, Shi Q, Meroueh SO, Vakulenko SB, Mobashery S.
    Journal: Biochemistry; 2007 Sep 04; 46(35):10113-21. PubMed ID: 17685588.
    Abstract:
    Penicillin-binding proteins (PBPs) and beta-lactamases are members of large families of bacterial enzymes. These enzymes undergo acylation at a serine residue with their respective substrates as the first step in their catalytic events. Penicillin-binding protein 5 (PBP 5) of Escherichia coli is known to perform a dd-carboxypeptidase reaction on the bacterial peptidoglycan, the major constituent of the cell wall. The roles of the active site residues Lys47 and Lys213 in the catalytic machinery of PBP 5 have been explored. By a sequence of site-directed mutagenesis and chemical modification, we individually introduced gamma-thialysine at each of these positions. The pH dependence of kcat/Km and of kcat for the wild-type PBP 5 and for the two gamma-thialysine mutant variants at positions 47 and 213 were evaluated. The pH optimum for the enzyme was at 9.5-10.5. The ascending limb to the pH optimum is due to Lys47; hence, this residue exists in the free-base form for catalysis. The descending limb from the pH optimum is contributed to by both Lys213 and a water molecule coordinated to Lys47. These results have been interpreted as Lys47 playing a key role in proton-transfer events in the course of catalysis during both the acylation and deacylation events. However, the findings for Lys213 argue for a protonated state at the pH optimum. Lys213 serves as an electrostatic anchor for the substrate.
    [Abstract] [Full Text] [Related] [New Search]