These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Histamine in Macaca mulatto monkey cardiac sympathetic nerve system: a morphological and functional assessment. Author: Li M, Hu J, Chen T, Meng J, Ma X, Li J, Jia M, Luo X. Journal: Auton Neurosci; 2007 Dec 30; 137(1-2):37-43. PubMed ID: 17689150. Abstract: Our previous study demonstrated the co-localization of histamine with norepinephrine (NE) within superior cervical ganglia (SCG), and the release of histamine from sympathetic nerve endings of guinea pig evoked by stimulations. We have now further investigated that whether the histamine can be synthesized, stored and released from the sympathetic nerve systems of Macaca mulatto monkey, and investigated the modulation of the sympathetic endogenous histamine release through histamine H(3) receptor in the monkey cardiac sympathetic nerve system. Double-labeled immunofluorescence technique was applied to investigate co-localization of histamine and NE in SCG of Macaca mulatto monkey. The cardiac sympathetic nerve terminals (synaptosomes) of Macaca mulatto monkey was prepared and depolarized with 50 mmol/L K(+). Histamine released from synaptosomes was detected by spectrofluorometer and regulations of histamine release through Ca(2+), Ca(2+)-channel blockers, H(3)-receptor agonist (R)-alpha-methylhistamine and histamine H(3)-receptor antagonist, thioperamide were observed. Co-localization of histamine and NE was identified within the same neuron of SCG. Release of histamine was Ca(2+)-dependent and inhibited by N-type Ca(2+)-channel blocker omega-conotoxin, but not affected by the L-type Ca(2+)-channel blocker lacidipine. Compound 48/80, a mast cell releaser, did not affect cardiac synaptosome histamine exocytosis. Cardiac synaptosome histamine release was augmented by the enhanced synthesis of histamine or the inhibition of histamine metabolism. Histamine H(3)-receptor activation by (R)-alpha-methylhistamine inhibited high K(+)-evoked histamine release and thioperamide blocked the effects of (R)-alpha-methylhistamine. These results firstly showed that histamine co-existed with NE within sympathetic neurons of monkey and the exocytosis of histamine from sympathetic terminals could be regulated by presynaptic histamine H(3) receptors. Sympathetic histamine may act as a neurotransmitter to modulate sympathetic neurotransmission.[Abstract] [Full Text] [Related] [New Search]