These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles.
    Author: Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM.
    Journal: Int J Pharm; 2008 Jan 04; 346(1-2):160-8. PubMed ID: 17689897.
    Abstract:
    The purpose of this study was to develop quercetin-loaded nanoparticles (QUEN) by a nanoprecipitation technique with Eudragit E (EE) and polyvinyl alcohol (PVA) as carriers, and to evaluate the antioxidant effects of quercetin (QU) and of its nanoparticles. The novel QUEN systems were characterized by particle size and morphology, yield and encapsulation efficiency, differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), (1)H nuclear magnetic resonance ((1)H NMR), and dissolution study. It was observed that the weight ratio of QU:EE:PVA at 1:10:10 carried a particle size of <85 nm, a particle distribution with polydispersity index <0.3, and its yield and encapsulation efficiency were over 99%. The results from XRD and DSC of the QUEN showed that the crystal of the drug might be converted to an amorphous state. The FT-IR and (1)H NMR demonstrated that QU formed intermolecular hydrogen bonding with carriers. The release of the drug from the QUEN was 74-fold higher compared with the pure drug. In addition, the antioxidant activity of the QUEN was more effective than pure QU on DPPH scavenging, anti-superoxide formation, superoxide anion scavenging, and anti-lipid peroxidation.
    [Abstract] [Full Text] [Related] [New Search]