These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Self-similar properties of the spatial structure of intertidal macro- and microbenthic communities]. Author: Azovskiĭ AI, Burkovskiĭ IV, Kolobov MIu, Kucheruk NV, Saburova MA, Sapozhnikov FV, Udalov AA, Chertoprud MV. Journal: Zh Obshch Biol; 2007; 68(3):180-94. PubMed ID: 17691455. Abstract: Spatial distribution (SD) of White Sea intertidal soft-bottom communities was studied at scales from decimetres to dozens of kilometres on the basis of an extensive dataset (464 samples of macrofauna, 349 samples of ciliates, and 333 samples of diatoms). We used the information index of structural heterogeneity D(I) (Azovsky et al., 2000 // Mar. Biol. 136 (3): 581-590) to characterize spatial variability in the species composition of the communities at different extent (total area surveyed) and grain (finest spatial resolution). The type of distribution was determined via the relation between D(I) and parameters of the spatial scale (extent and grain). At small scale (in terms of extent), all the communities were distributed randomly (mosaic SD). At larger scales, the estimated spatial variability depended neither on extent nor grain, exclusively on their ratio, i.e., was scale-invariant. This means that at some scale the spatial patterns of communities display self-similar properties (fractal SD). Such SD was found at a rather wide range of scales scales: 10(1)-10(4) m for the macrofauna, 10(0)-10(3) m for the ciliates, and 10(-1)-10(2) m for the diatoms. At still greater scales, patchy or gradient patters were observed. Thus, the ranges of fractal distribution were proportional to the average size of the organisms (approximately 10(4)-10(7) times the body size). We suppose that such spatial pattern reflects community self-organization in a relatively homogeneous environment and may be the most efficient way to realize the highest structural diversity on the basis of pre-formed complexes of predominant species. We also suppose that fractal-like patterns may be a general feature of the spatial organization of communities.[Abstract] [Full Text] [Related] [New Search]