These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Energetics of cresols and of methylphenoxyl radicals. Author: Richard LS, Bernardes CE, Diogo HP, Leal JP, da Piedade ME. Journal: J Phys Chem A; 2007 Sep 06; 111(35):8741-8. PubMed ID: 17691757. Abstract: Combustion calorimetry studies were used to determine the standard molar enthalpies of formation of o-, m-, and p-cresols, at 298.15 K, in the condensed state as Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,cr) = -204.2 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,l) = -196.6 +/- 2.1 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,cr) = -202.2 +/- 3.0 kJ.mol(-1). Calvet drop calorimetric measurements led to the following enthalpy of sublimation and vaporization values at 298.15 K: Delta(sub)H(m) degrees (o-CH(3)C(6)H(4)OH) = 73.74 +/- 0.46 kJ.mol(-1), Delta(vap)H(m) degrees (m-CH(3)C(6)H(4)OH) = 64.96 +/- 0.69 kJ.mol(-1), and Delta(sub)H(m) degrees (p-CH(3)C(6)H(4)OH) = 73.13 +/- 0.56 kJ.mol(-1). From the obtained Delta(f)H(m) degrees (l/cr) and Delta(vap)H(m) degrees /Delta(sub)H(m) degrees values, it was possible to derive Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,g) = -130.5 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,g) = -131.6 +/- 2.2 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,g) = -129.1 +/- 3.1 kJ.mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by the B3LYP/cc-pVDZ, B3LYP/cc-pVTZ, B3P86/cc-pVDZ, B3P86/cc-pVTZ, MPW1PW91/cc-pVTZ, CBS-QB3, and CCSD/cc-pVDZ//B3LYP/cc-pVTZ methods, were used to obtain the differences between the enthalpy of formation of the phenoxyl radical and the enthalpies of formation of the three methylphenoxyl radicals: Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (o-CH(3)C(6)H(4)O*,g) = 42.2 +/- 2.8 kJ.mol(-1), Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (m-CH(3)C(6)H(4)O*,g) = 36.1 +/- 2.4 kJ.mol(-1), and Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (p-CH(3)C(6)H(4)O*,g) = 38.6 +/- 3.2 kJ.mol(-1). The corresponding differences in O-H bond dissociation enthalpies were also derived as DH degrees (C(6)H(5)O-H) - DH degrees (o-CH(3)C(6)H(4)O-H) = 8.1 +/- 4.0 kJ.mol(-1), DH degrees (C(6)H(5)O-H) - DH degrees (m-CH(3)C(6)H(4)O-H) = 0.9 +/- 3.4 kJ.mol(-1), and DH degrees (C(6)H(5)O-H) - DH degrees (p-CH(3)C(6)H(4)O-H) = 5.9 +/- 4.5 kJ.mol(-1). Based on the differences in Gibbs energies of formation obtained from the enthalpic data mentioned above and from published or calculated entropy values, it is concluded that the relative stability of the cresols varies according to p-cresol < m-cresol < o-cresol, and that of the radicals follows the trend m-methylphenoxyl < p-methylphenoxyl < o-methylphenoxyl. It is also found that these tendencies are enthalpically controlled.[Abstract] [Full Text] [Related] [New Search]