These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anesthetic preconditioning confers acute cardioprotection via up-regulation of manganese superoxide dismutase and preservation of mitochondrial respiratory enzyme activity. Author: Chen CH, Liu K, Chan JY. Journal: Shock; 2008 Feb; 29(2):300-8. PubMed ID: 17693941. Abstract: The cellular and molecular mechanisms that underlie cardioprotection against I/R by anesthetic-induced preconditioning (APC) require further elucidation. Using isoflurane as a representative anesthetic, we evaluated the hypothesis that APC induces myocardial protection against I/R by attenuation of excessive reactive oxygen species and restoration of mitochondrial bioenergetics through postischemic up-regulation of manganese superoxide dismutase (MnSOD) expression and preservation of respiratory enzyme activity. Pentobarbital anesthetized open-chest Sprague-Dawley rats were subject to 30-min left coronary artery occlusion, followed by 120-min reperfusion. Before ischemia, rats were randomly assigned to receive 0.9% saline, two cycles of brief coronary artery occlusion and reperfusion, or a 30-min exposure to 1.0 minimum alveolar concentration isoflurane in the absence or presence of a specific mitochondrial adenosine triphosphate-sensitive potassium (KATP) channel blocker, 5-hydroxydecanoate; a membrane-permeable superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl; or a NOS inhibitor, N(G)-nitro-L-arginine methyl ester. Isoflurane exposure induced an initial increase in myocardial superoxide (O2-), but not NO level. It also significantly decreased infarct size and restored mitochondrial respiratory enzyme activity or ATP production in I/R rat hearts, along with suppression of the O2- surge at reperfusion and increase in MnSOD expression or enzyme activity. These protective effects were abrogated by 5-hydroxydecanoate or 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl, but not by N(G)-nitro-L-arginine methyl ester pretreatment. These results suggest that opening of mitochondrial KATP channel, followed by O2- signaling, induces postischemic augmentation of MnSOD and preservation of mitochondrial respiratory enzyme activities, leading to attenuated cardiac O2- surge and restored ATP production during reperfusion, and underlie APC-induced cardioprotection.[Abstract] [Full Text] [Related] [New Search]