These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Self-assembly of recombinant amphiphilic oligopeptides into vesicles.
    Author: van Hell AJ, Costa CI, Flesch FM, Sutter M, Jiskoot W, Crommelin DJ, Hennink WE, Mastrobattista E.
    Journal: Biomacromolecules; 2007 Sep; 8(9):2753-61. PubMed ID: 17696394.
    Abstract:
    The aim of the present study was to design amphiphilic oligopeptides that can self-assemble into vesicular structures. The ratio of hydrophilic to hydrophobic block length was varied, and peptides were designed to have a hydrophobic tail in which the bulkiness of the amino acid side groups increases toward the hydrophilic domain (Ac-Ala-Ala-Val-Val-Leu-Leu-Leu-Trp-Glu(2/7)-COOH). These peptides were recombinantly produced in bacteria as an alternative to solid-phase synthesis. We demonstrate with different complementary techniques (dynamic and static light scattering, tryptophan fluorescence anisotropy, and electron microscopy) that these amphiphilic peptides spontaneously form vesicles with a radius of approximately 60 nm and a low polydispersity when dispersed in aqueous solution at neutral pH. Morphology and size of the vesicles were relatively insensitive to the variations in hydrophilic block length. Exposure to acidic pH resulted in formation of visible aggregates, which could be fully reversed to vesicles upon pH neutralization. In addition, it was demonstrated that water-soluble molecules can be entrapped inside these peptide vesicles. Such peptide vesicles may find applications as biodegradable drug delivery systems with a pH-dependent release profile.
    [Abstract] [Full Text] [Related] [New Search]